--- title: HashMap 源码分析 category: Java tag: - Java集合 --- > 感谢 [changfubai](https://github.com/changfubai) 对本文的改进做出的贡献! ## HashMap 简介 HashMap 主要用来存放键值对,它基于哈希表的 Map 接口实现,是常用的 Java 集合之一,是非线程安全的。 `HashMap` 可以存储 null 的 key 和 value,但 null 作为键只能有一个,null 作为值可以有多个 JDK1.8 之前 HashMap 由 数组+链表 组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突)。 JDK1.8 以后的 `HashMap` 在解决哈希冲突时有了较大的变化,当链表长度大于等于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。 `HashMap` 默认的初始化大小为 16。之后每次扩充,容量变为原来的 2 倍。并且, `HashMap` 总是使用 2 的幂作为哈希表的大小。 ## 底层数据结构分析 ### JDK1.8 之前 JDK1.8 之前 HashMap 底层是 **数组和链表** 结合在一起使用也就是 **链表散列**。 HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过 `(n - 1) & hash` 判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。 所谓扰动函数指的就是 HashMap 的 hash 方法。使用 hash 方法也就是扰动函数是为了防止一些实现比较差的 hashCode() 方法 换句话说使用扰动函数之后可以减少碰撞。 **JDK 1.8 HashMap 的 hash 方法源码:** JDK 1.8 的 hash 方法 相比于 JDK 1.7 hash 方法更加简化,但是原理不变。 ```java static final int hash(Object key) { int h; // key.hashCode():返回散列值也就是hashcode // ^:按位异或 // >>>:无符号右移,忽略符号位,空位都以0补齐 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } ``` 对比一下 JDK1.7 的 HashMap 的 hash 方法源码. ```java static int hash(int h) { // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } ``` 相比于 JDK1.8 的 hash 方法 ,JDK 1.7 的 hash 方法的性能会稍差一点点,因为毕竟扰动了 4 次。 所谓 **“拉链法”** 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。 ![jdk1.8 之前的内部结构-HashMap](https://oss.javaguide.cn/github/javaguide/java/collection/jdk1.7_hashmap.png) ### JDK1.8 之后 相比于之前的版本,JDK1.8 以后在解决哈希冲突时有了较大的变化。 当链表长度大于阈值(默认为 8)时,会首先调用 `treeifyBin()`方法。这个方法会根据 HashMap 数组来决定是否转换为红黑树。只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。否则,就是只是执行 `resize()` 方法对数组扩容。相关源码这里就不贴了,重点关注 `treeifyBin()`方法即可! ![jdk1.8之后的内部结构-HashMap](https://oss.javaguide.cn/github/javaguide/java/collection/jdk1.8_hashmap.png) **类的属性:** ```java public class HashMap extends AbstractMap implements Map, Cloneable, Serializable { // 序列号 private static final long serialVersionUID = 362498820763181265L; // 默认的初始容量是16 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 最大容量 static final int MAXIMUM_CAPACITY = 1 << 30; // 默认的负载因子 static final float DEFAULT_LOAD_FACTOR = 0.75f; // 当桶(bucket)上的结点数大于等于这个值时会转成红黑树 static final int TREEIFY_THRESHOLD = 8; // 当桶(bucket)上的结点数小于等于这个值时树转链表 static final int UNTREEIFY_THRESHOLD = 6; // 桶中结构转化为红黑树对应的table的最小容量 static final int MIN_TREEIFY_CAPACITY = 64; // 存储元素的数组,总是2的幂次倍 transient Node[] table; // 一个包含了映射中所有键值对的集合视图 transient Set> entrySet; // 存放元素的个数,注意这个不等于数组的长度。 transient int size; // 每次扩容和更改map结构的计数器 transient int modCount; // 阈值(容量*负载因子) 当实际大小超过阈值时,会进行扩容 int threshold; // 负载因子 final float loadFactor; } ``` - **loadFactor 负载因子** loadFactor 负载因子是控制数组存放数据的疏密程度,loadFactor 越趋近于 1,那么 数组中存放的数据(entry)也就越多,也就越密,也就是会让链表的长度增加,loadFactor 越小,也就是趋近于 0,数组中存放的数据(entry)也就越少,也就越稀疏。 **loadFactor 太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor 的默认值为 0.75f 是官方给出的一个比较好的临界值**。 给定的默认容量为 16,负载因子为 0.75。Map 在使用过程中不断的往里面存放数据,当数量超过了 16 \* 0.75 = 12 就需要将当前 16 的容量进行扩容,而扩容这个过程涉及到 rehash、复制数据等操作,所以非常消耗性能。 - **threshold** **threshold = capacity \* loadFactor**,**当 Size>threshold**的时候,那么就要考虑对数组的扩增了,也就是说,这个的意思就是 **衡量数组是否需要扩增的一个标准**。 **Node 节点类源码:** ```java // 继承自 Map.Entry static class Node implements Map.Entry { final int hash;// 哈希值,存放元素到hashmap中时用来与其他元素hash值比较 final K key;//键 V value;//值 // 指向下一个节点 Node next; Node(int hash, K key, V value, Node next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } // 重写hashCode()方法 public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } // 重写 equals() 方法 public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry e = (Map.Entry)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } } ``` **树节点类源码:** ```java static final class TreeNode extends LinkedHashMap.Entry { TreeNode parent; // 父 TreeNode left; // 左 TreeNode right; // 右 TreeNode prev; // needed to unlink next upon deletion boolean red; // 判断颜色 TreeNode(int hash, K key, V val, Node next) { super(hash, key, val, next); } // 返回根节点 final TreeNode root() { for (TreeNode r = this, p;;) { if ((p = r.parent) == null) return r; r = p; } ``` ## HashMap 源码分析 ### 构造方法 HashMap 中有四个构造方法,它们分别如下: ```java // 默认构造函数。 public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } // 包含另一个“Map”的构造函数 public HashMap(Map m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false);//下面会分析到这个方法 } // 指定“容量大小”的构造函数 public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } // 指定“容量大小”和“负载因子”的构造函数 public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; // 初始容量暂时存放到 threshold ,在resize中再赋值给 newCap 进行table初始化 this.threshold = tableSizeFor(initialCapacity); } ``` > 值得注意的是上述四个构造方法中,都初始化了负载因子 loadFactor,由于 HashMap 中没有 capacity 这样的字段,即使指定了初始化容量 initialCapacity ,也只是通过 tableSizeFor 将其扩容到与 initialCapacity 最接近的 2 的幂次方大小,然后暂时赋值给 threshold ,后续通过 resize 方法将 threshold 赋值给 newCap 进行 table 的初始化。 **putMapEntries 方法:** ```java final void putMapEntries(Map m, boolean evict) { int s = m.size(); if (s > 0) { // 判断table是否已经初始化 if (table == null) { // pre-size /* * 未初始化,s为m的实际元素个数,ft=s/loadFactor => s=ft*loadFactor, 跟我们前面提到的 * 阈值=容量*负载因子 是不是很像,是的,ft指的是要添加s个元素所需的最小的容量 */ float ft = ((float)s / loadFactor) + 1.0F; int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY); /* * 根据构造函数可知,table未初始化,threshold实际上是存放的初始化容量,如果添加s个元素所 * 需的最小容量大于初始化容量,则将最小容量扩容为最接近的2的幂次方大小作为初始化。 * 注意这里不是初始化阈值 */ if (t > threshold) threshold = tableSizeFor(t); } // 已初始化,并且m元素个数大于阈值,进行扩容处理 else if (s > threshold) resize(); // 将m中的所有元素添加至HashMap中,如果table未初始化,putVal中会调用resize初始化或扩容 for (Map.Entry e : m.entrySet()) { K key = e.getKey(); V value = e.getValue(); putVal(hash(key), key, value, false, evict); } } } ``` ### put 方法 HashMap 只提供了 put 用于添加元素,putVal 方法只是给 put 方法调用的一个方法,并没有提供给用户使用。 **对 putVal 方法添加元素的分析如下:** 1. 如果定位到的数组位置没有元素 就直接插入。 2. 如果定位到的数组位置有元素就和要插入的 key 比较,如果 key 相同就直接覆盖,如果 key 不相同,就判断 p 是否是一个树节点,如果是就调用`e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value)`将元素添加进入。如果不是就遍历链表插入(插入的是链表尾部)。 ![ ](https://oss.javaguide.cn/github/javaguide/database/sql/put.png) ```java public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node[] tab; Node p; int n, i; // table未初始化或者长度为0,进行扩容 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中) if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); // 桶中已经存在元素(处理hash冲突) else { Node e; K k; //快速判断第一个节点table[i]的key是否与插入的key一样,若相同就直接使用插入的值p替换掉旧的值e。 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; // 判断插入的是否是红黑树节点 else if (p instanceof TreeNode) // 放入树中 e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value); // 不是红黑树节点则说明为链表结点 else { // 在链表最末插入结点 for (int binCount = 0; ; ++binCount) { // 到达链表的尾部 if ((e = p.next) == null) { // 在尾部插入新结点 p.next = newNode(hash, key, value, null); // 结点数量达到阈值(默认为 8 ),执行 treeifyBin 方法 // 这个方法会根据 HashMap 数组来决定是否转换为红黑树。 // 只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。否则,就是只是对数组扩容。 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); // 跳出循环 break; } // 判断链表中结点的key值与插入的元素的key值是否相等 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) // 相等,跳出循环 break; // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表 p = e; } } // 表示在桶中找到key值、hash值与插入元素相等的结点 if (e != null) { // 记录e的value V oldValue = e.value; // onlyIfAbsent为false或者旧值为null if (!onlyIfAbsent || oldValue == null) //用新值替换旧值 e.value = value; // 访问后回调 afterNodeAccess(e); // 返回旧值 return oldValue; } } // 结构性修改 ++modCount; // 实际大小大于阈值则扩容 if (++size > threshold) resize(); // 插入后回调 afterNodeInsertion(evict); return null; } ``` **我们再来对比一下 JDK1.7 put 方法的代码** **对于 put 方法的分析如下:** - ① 如果定位到的数组位置没有元素 就直接插入。 - ② 如果定位到的数组位置有元素,遍历以这个元素为头结点的链表,依次和插入的 key 比较,如果 key 相同就直接覆盖,不同就采用头插法插入元素。 ```java public V put(K key, V value) if (table == EMPTY_TABLE) { inflateTable(threshold); } if (key == null) return putForNullKey(value); int hash = hash(key); int i = indexFor(hash, table.length); for (Entry e = table[i]; e != null; e = e.next) { // 先遍历 Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); // 再插入 return null; } ``` ### get 方法 ```java public V get(Object key) { Node e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node getNode(int hash, Object key) { Node[] tab; Node first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // 数组元素相等 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 桶中不止一个节点 if ((e = first.next) != null) { // 在树中get if (first instanceof TreeNode) return ((TreeNode)first).getTreeNode(hash, key); // 在链表中get do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; } ``` ### resize 方法 进行扩容,会伴随着一次重新 hash 分配,并且会遍历 hash 表中所有的元素,是非常耗时的。在编写程序中,要尽量避免 resize。resize 方法实际上是将 table 初始化和 table 扩容 进行了整合,底层的行为都是给 table 赋值一个新的数组。 ```java final Node[] resize() { Node[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { // 超过最大值就不再扩充了,就只好随你碰撞去吧 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } // 没超过最大值,就扩充为原来的2倍 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold // 创建对象时初始化容量大小放在threshold中,此时只需要将其作为新的数组容量 newCap = oldThr; else { // signifies using defaults 无参构造函数创建的对象在这里计算容量和阈值 newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { // 创建时指定了初始化容量或者负载因子,在这里进行阈值初始化, // 或者扩容前的旧容量小于16,在这里计算新的resize上限 float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node[] newTab = (Node[])new Node[newCap]; table = newTab; if (oldTab != null) { // 把每个bucket都移动到新的buckets中 for (int j = 0; j < oldCap; ++j) { Node e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) // 只有一个节点,直接计算元素新的位置即可 newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) // 将红黑树拆分成2棵子树,如果子树节点数小于等于 UNTREEIFY_THRESHOLD(默认为 6),则将子树转换为链表。 // 如果子树节点数大于 UNTREEIFY_THRESHOLD,则保持子树的树结构。 ((TreeNode)e).split(this, newTab, j, oldCap); else { Node loHead = null, loTail = null; Node hiHead = null, hiTail = null; Node next; do { next = e.next; // 原索引 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } // 原索引+oldCap else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); // 原索引放到bucket里 if (loTail != null) { loTail.next = null; newTab[j] = loHead; } // 原索引+oldCap放到bucket里 if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; } ``` ## HashMap 常用方法测试 ```java package map; import java.util.Collection; import java.util.HashMap; import java.util.Set; public class HashMapDemo { public static void main(String[] args) { HashMap map = new HashMap(); // 键不能重复,值可以重复 map.put("san", "张三"); map.put("si", "李四"); map.put("wu", "王五"); map.put("wang", "老王"); map.put("wang", "老王2");// 老王被覆盖 map.put("lao", "老王"); System.out.println("-------直接输出hashmap:-------"); System.out.println(map); /** * 遍历HashMap */ // 1.获取Map中的所有键 System.out.println("-------foreach获取Map中所有的键:------"); Set keys = map.keySet(); for (String key : keys) { System.out.print(key+" "); } System.out.println();//换行 // 2.获取Map中所有值 System.out.println("-------foreach获取Map中所有的值:------"); Collection values = map.values(); for (String value : values) { System.out.print(value+" "); } System.out.println();//换行 // 3.得到key的值的同时得到key所对应的值 System.out.println("-------得到key的值的同时得到key所对应的值:-------"); Set keys2 = map.keySet(); for (String key : keys2) { System.out.print(key + ":" + map.get(key)+" "); } /** * 如果既要遍历key又要value,那么建议这种方式,因为如果先获取keySet然后再执行map.get(key),map内部会执行两次遍历。 * 一次是在获取keySet的时候,一次是在遍历所有key的时候。 */ // 当我调用put(key,value)方法的时候,首先会把key和value封装到 // Entry这个静态内部类对象中,把Entry对象再添加到数组中,所以我们想获取 // map中的所有键值对,我们只要获取数组中的所有Entry对象,接下来 // 调用Entry对象中的getKey()和getValue()方法就能获取键值对了 Set> entrys = map.entrySet(); for (java.util.Map.Entry entry : entrys) { System.out.println(entry.getKey() + "--" + entry.getValue()); } /** * HashMap其他常用方法 */ System.out.println("after map.size():"+map.size()); System.out.println("after map.isEmpty():"+map.isEmpty()); System.out.println(map.remove("san")); System.out.println("after map.remove():"+map); System.out.println("after map.get(si):"+map.get("si")); System.out.println("after map.containsKey(si):"+map.containsKey("si")); System.out.println("after containsValue(李四):"+map.containsValue("李四")); System.out.println(map.replace("si", "李四2")); System.out.println("after map.replace(si, 李四2):"+map); } } ```